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Abstract: Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thom-
son scattering systems (TS) are major optical diagnostics being designed and developed for ITER.
Each of them relies upon a sophisticated quantitative understanding of the electron response to
laser light propagating through a burning plasma. Review of the theoretical results for two different
applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered
light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P
applications, rigorous analytical results are obtained perturbatively by expansion in powers of the
small parameter τ = Te/mec2, where Te is electron temperature and me is electron rest mass. Ex-
perimental validation of the analytical models has been made by analyzing data of more than 1200
pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical ex-
pressions are included in the error analysis and design projects of the ITER TIP and PoPola systems.
The polarization properties of incoherent Thomson scattered light are being examined as a method
of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector
transformation andMuellermatrices formalism. The general approach is subdivided into frequency-
integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions
are presented in the form ofMuellermatrix elements averaged over the relativisticMaxwellian distri-
bution function. New results related to the detailed verification of the frequency-resolved solutions
are reported. The precise analytic expressions provide output much more rapidly than relativistic
kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
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1 Introduction

Toroidal interferometry/polarimetry (TIP) [1], poloidal polarimetry (PoPola) [2], and Thomson
scattering systems (TS) [3] are major optical diagnostics being designed and developed for ITER.
Each of them is based on the electron response to laser light propagating through the plasma. We
examine the effects of relativistic electron thermal motion on the refractive indices and polarization
of high-frequency electromagnetic waves (specifically laser light, both directed and scattered).
Two different topics are covered: interferometry/polarimetry (I/P) and polarization of Thomson
scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects.
Fundamentally, each of these diagnostics relies upon a sophisticated quantitative understanding of
the electron response to laser light propagating through a burning plasma. Improvements in this
understanding are being used to guide and constrain the design of these diagnostics, and, once they
are operational, will be used to improve measurement accuracy.

Interferometry and polarimetry are based on specific features of the plasma dielectric response.
The magnetized plasma exhibits birefringence, and two orthogonal states of wave polarization with
different refractive indices are present. Important consequences of plasma birefringence are the
Faraday (FR) effect of rotation of the polarization plane and the Cotton-Mouton effect (CM) leading
to both rotation and deformation of the polarization ellipse [4]. For many years, interpretaion
of I/P measurements in plasma has been done using the cold plasma model. At high electron
temperatures in fusion devices such as ITER, this will lead to significant errors. Rigorous analytical
theory of the thermal corrections is developed perturbatively by expansion in powers of the small
parameter τ = Te/mec2, where Te is electron temperature and me is electron rest mass [5]. There
are two physically different sources of linear in τ corrections which are comparable in magnitude
but contribute with opposite signs: non-relativistic (NR) Doppler-like effects and the relativistic

– 1 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
C
0
2
0
0
9

electron mass dependence on the velocity. The effects of finite electron temperature were addressed
in the non-relativistic limit in ref. [6]. In ref. [5], it has been pointed out that both the NR effects
and the relativistic electron mass factors are equally important for thermal corrections theory. The
relativistic mass effect reduces the magnitude of the NR correction for the Cotton-Mouton effect
and changes the signs of the corrections to the interferometric phase and Faraday rotation angle.
The validity of the analytical results has been proven computationally by comparison with the
ray-tracing numerical code GENRAY. Experimental validation of the analytical models has been
made by analyzing data of more than 1200 pulses collected from high-Te JET discharges [7].
Good agreement with the full relativistic model was demonstrated, and disagreement with the cold
plasma and NR models. These were the first experimental observations of relativistic effects in
plasma polarimetry. Based on the experimental validation the relativistic analytical expressions
are included in the error analysis and design projects of the ITER TIP and PoPola systems [8].
The linear in τ model has been recently improved by adding quadratic in Te corrections [9] and
extended from Maxwellian to a more general class of anisotropic electron distributions to account
for distortions caused by equilibrium current, ECRH and RF current drive effects [10, 11].

Interaction of the laser beam with plasma causes light to scatter away from the direction of
the incident light. The power spectrum of this low intensity Thomson scattered light is routinely
used for electron temperature measurement, with Te proportional to the square of the scattered
spectrum width [12]. Instead of frequency spectrum broadening, we analyze in this paper the
polarization properties of TS radiation as a method of electron temperature measurement relevant
to ITER operational regimes. The possibility of determining the plasma electron temperature
by measuring the degree of depolarization was suggested in ref. [13]. If the dependence of the
degree of depolarization on electron temperature is accurately known from theory, the accuracy
of such a diagnostic could potentially exceed that of the conventional spectrum-based TS method.
The theory is based on Stokes vector transformation and Mueller matrix method. This formalism
was applied for the first time for Thomson scattering in ref. [14]. In our analysis, we followed
ref. [14] with some important corrections and improvements. In particular, the finite transit time
effect [15] is properly incorporated into the scattering operator. Another important improvement is
optimal choice of the reference frame for averaging over velocity space. This allows derivation of
exact relativistic analytical expressions for Mueller matrix elements averaged over the relativistic
Maxwellian distribution function. The calculations are performed without any approximations for
the full range of incident polarizations, scattering angles, and electron thermal motion from non-
relativistic to ultra-relativistic. The general approach is subdivided into frequency-integrated and
frequency-resolved applications. Solutions for the frequency-integrated case were obtained first and
reported in a series of publications [10, 11, 16, 17]. Detailed theoretical description is presented in
ref. [18]. Analytical solutions for the frequency-resolved case were obtained recently and published
in a topical review [19] of theThomson scattering polarization concept. The newly derived analytical
solutions for the frequency-resolved case have been lately verified by comparison with the pure
numerical code developed by L. Giudicotti and co-authors. The results are in a good agreement
(< 0.01% deviations) verifying both calculations. Precise analytic expressions are important for
burning plasmas where various techniques will be applied for direct real time feedback control of
device operations with fast time resolution which is beyond the limits of slowly operating relativistic
kinetic codes. The purpose of the present paper is to review already existing electron kinetic theory
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results in support of optical diagnostics as well as to report new verification work confirming validity
of the exact solutions for the frequency-resolved Mueller matrix elements. The progress achieved
in Thomson scattering analysis is described first, followed by interferometry and polarimetry.

2 Polarization of Thomson scattering

Scattered electromagnetic waves are characterized not only by frequency but also by their po-
larization. The scattering process changes the polarization, an effect that becomes large in high-
temperature burning plasmas. It has been typically described by the relativistic depolarization factor
q (see refs. [4, 12]). When the scattered light collection system selects for a specific orientation of
linear polarization, the factor q quantifies the reduction of the collected spectral intensity due to
changes in the polarization of the incident linearly polarized laser light. The factor q < 1 arises
from relativistic terms ∝ v2

e/c
2 in the polarization part of the scattering operator.

Although this reduction is referred to as depolarization, it is different from the use of depo-
larization considered in the present paper. Indeed, the aforementioned reduction of intensity takes
place even for scattering on a single moving electron. In this case, the scattered electromagnetic
wave has a Doppler-shifted frequency but still remains monochromatic and completely polarized.
The transition from fully-polarized incident light to partially-polarized scattered light is caused by
the superposition effect of a large number of randomly moving electrons. It results in broadening of
the frequency spectrum and also renders the scattered radiation partially polarized even though the
incident light is fully polarized. We focus our attention on this mechanism of loss of polarization
in the process of incoherent TS.

The loss of polarization is quantified by the degree of polarization P, or equivalently by the
degree of depolarization D = 1 − P. The polarization properties of a non-monochromatic plane
wave are characterized by a 2×2 complex Hermitian coherency matrix Ĵ. The matrix is constructed
from time averaged quadratic combinations of the field components and represented, in general, by
four real quantities which can be equivalently expressed by four Stokes parameters or 4-component
Stokes vector S

Ĵ =

(
< ExE?

x > < ExE?
y >

< EyE?
x > < EyE?

y >

)
=

1
2

(
S0 + S1 S2 + iS3

S2 − iS3 S0 − S1

)
. (2.1)

The S0 component is a measure of the total intensity I of the wave and the remaining components
describe the polarization properties. For a purely monochromatic, fully polarized incident wave,
the amplitudes and the phases of Ex and Ey are independent of time. In this case det|Ĵ| = 0, leading
to the relationship S2

0 = S2
1 + S2

2 + S2
3 . Due to this connection between the components, the state

of polarization of the incident laser light used in Thomson scattering systems, and the evolution of
the polarization of monochromatic laser light used for interferometric/polarimetric diagnostics, is
often described by the three-component unit Stokes vector si = Si/S0 (i = 1, 2, 3). This unit vector
is characterized by the azimuth (orientation angle) of the polarization ellipse 0 ≤ ψ < π and the
ellipticity angle χ = ± arctan(b2/b1) determined by the ratio of the minor and the major semi-axis
(−π/4 < χ ≤ π/4) (see figure 1). In section 2, we use the full four-component Stokes vector S(i) to
characterize monochromatic incident laser light with arbitrary elliptical polarization. Correspond-
ingly, the four-component Stokes vector of fully polarized incident laser light is expressed as

S(i) = S(i)0 (1, cos 2ψ cos 2χ, sin 2ψ cos 2χ, sin 2χ). (2.2)

In section 3, the reduced three-component unit Stokes vector s is used.
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Figure 1. The azimuth of the polariza-
tion ellipse ψ (orientation angle) and the
ellipticity angle χ for purely monochro-
matic, fully polarized incident wave.

x

s

i
ex

θ y

Figure 2. The incident and the scattered wave
directions i = ki/|ki | and s = ks/|ks | (θ is the
scattering angle in the plane perpendicular to
the vector ex = [s × i]/sin θ).

A fully unpolarized wave (natural light) is characterized by S1 = S2 = S3 = 0. Any partially
polarized wave can be decomposed into completely unpolarized and polarized portions. As they are
statistically independent, the 4-component Stokes vector of the mixture is a sum of the respective
vectors of the separate waves. Defining the unpolarized and polarized parts as S(unpol) = (S0 −√

S2
1 + S2

2 + S2
3, 0, 0, 0) and S(pol) = (

√
S2

1 + S2
2 + S2

3, S1, S2, S3) yields the degrees of polarization
and depolarization of the total wave field of intensity I = S0. The degree of polarization is
determined by the relative intensity Ipol of the polarized component

P =
Ipol

I
=

√
S2

1 + S2
2 + S2

3

S0
, D = 1 − P, (2.3)

where D = Iunpol/I is the degree of depolarization defined as the relative intensity of the unpolarized
component. The degree of polarization P varies from the value P = 0 for unpolarized to P = 1 for
fully polarized light.

2.1 Scattering from a single electron

Scattering from a single electron is treated as a re-emission of electromagnetic radiation by a
free electron moving and oscillating in the electric and magnetic fields of the incident laser light.
Instead of using the time-dependent scattered field Es(r, t) involved in the definition of the Stokes
vector (2.1), we operate with the Fourier transformed truncated electric field E(T )s (r, ω). For a
stationary incident laser beam characterized by an infinitely long wave packet of monochromatic
radiation the truncation method is a substantial element of the Fourier transformation [18, 19].
The integration over t associated with the time averaging in (2.1) is converted to integration over
ω. The integrand of this expression is defined as a spectral density of the Stokes vector S(s)(ω).
Correspondingly, the full frequency integrated Stokes vector S(s) is obtained by integrating the
spectral density S(s)(ω) over the spectrum of the scattered radiation

S(s) =
∫ +∞

−∞

S(s)(ω)dω. (2.4)
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We do not introduce additional indices to distinguish between frequency-integrated quantities such
as S(s) and frequency-dependent spectral density functions such as S(s)(ω), except for explicit
indication of ω as an argument of all functions of the second type.

The most general method for the calculation of S(s)(ω) is based on the 4 × 4 Mueller matrix
that describes the transformation of the Stokes vector, S(s) = M̂(single)(ω, β) · S(i), in the process of
scattering on a single electron moving with an arbitrary velocity β = v/c. The specific form of the
matrix is determined by the electric field components transformation. Using the Lienard-Wiechert
potentials, the scattered electric field in the far-zone is expressed by an amplitude factor f (T )(ω, β)
and 2 × 2 matrix Π̂ which converts the incident field to the scattered field [18]). The spectral
characteristic ω, the width T of the truncation interval and spatial dependence on the distance from
the scattering volume to the point of observation (detector) are included in f (T )(ω, β) while the
explicit form of Π̂ is as follows(

E (T )sx (ω)

E (T )st (ω)

)
= f (T )(ω, β)

(
a b
−b c

) (
Eix

Eit

)
, c = βi + βs + βiβs − cos θ −

(βi + βs)
2

1 + cos θ
,

a = −(1 − βi)(1 − βs) + β2
x(1 − cos θ), b = βx(1 + cos θ − βi − βs) tan

θ

2
. (2.5)

The matrix Π̂ consists of three elements a, b and c. They are functions of the velocity components
βi = β · i, βs = β · s along the wave propagation directions, βx = β · ex component orthogonal to
the scattering plane and the scattering angle θ (see figure 2).

Using the scalar function f (T )(ω, β) and matrix Π̂, the Stokes vector of the scattered wave is
expressed in terms of quadratic combinations of the incident electric fields. This yields the Mueller
matrix that can be conveniently expressed as a product M̂(single)(ω, β) = C(ω, β)Ŵ(β). The 4 x 4
matrix Ŵ(β) is a function of quadratic combinations of the coefficients a, b and c

Ŵ(β) =
©«

a2 + 2b2 + c2 a2 − c2 2b(a − c) 0
a2 − c2 a2 − 2b2 + c2 2b(a + c) 0

2b(c − a) −2b(a + c) 2(ac − b2) 0
0 0 0 2(b2 + ac)

ª®®®®¬
. (2.6)

The scalar function C(ω, β) represents the square of the absolute value of f (T )(ω, β). It is propor-
tional to the δ-function that results from the limiting transition T →∞

C(ω, β) =
r2
0 (1 − β

2)I(i)

2r2(1 − βs)6
δ

(
ω − ωi

1 − βi
1 − βs

)
, (2.7)

where r0, r are the classical electron radius and the distance from the scattering volume to the point
of observation (detector), respectively. The normalization factor S(i)0 = I(i), which determines the
total intensity of the incident wave in equation (2.2) for S(i) is removed from this expression and
included in C(ω, β).

2.2 Frequency-integrated Mueller matrix

The Mueller matrix M̂(single)(ω, β) is used now to account for scattering from many electrons
passing through the finite size scattering volume V . The scattering volume is defined by the
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intersection of the region occupied by the laser beam and the region of observation determined by
the collection optics. The equilibrium electron distribution function is defined as the number of
electrons dN = ne fM (β) dβ dr with velocities in the interval β, β + dβ contained in a volume
element dr, where fM (β) is the relativistic Maxwellian distribution function normalized to unity

fM (β) =
µ exp(−µ/

√
1 − β2)

4πK2(µ)(1 − β2)5/2
, µ = mec2/Te (2.8)

and K2(µ) is themodified Bessel function of the second kind [20]. An intuitive way of accounting for
the effect of many electrons is tomultiply theMueller matrix from a single electron M̂(single)(ω, β) by
the total number of electrons neV fMdβ in the scattering volume V . However, as it has been shown
in original ref. [15] and discussed in detail in ref. [19], this intuitive approach fails to accurately
characterize the scattered radiation due to the interruptive nature of the signals emitted from the
finite scattering volume. This effect is referred in the literature as to the finite transit time effect
(FTT). The FTT effect can be taken into account by using the corrected total number of electrons
(1 − βs)neV fMdβ for integration over the relativistic Maxwellian distribution function (2.8). Both
N = neV and (1 − βs) factors are missing in ref. [14].

The full frequency-integrated Stokes vector (2.4) is determined by the spectral Stokes vector
density S(s)(ω, β) integrated over the entire frequency range. Using Mueller matrix representation
gives S(s) in the form of a product, S(s) = M̂(single)(β) · S(i), where M̂(single)(β) is the frequency-
integrated Mueller matrix. Explicit integration over ω in (2.7) removes the δ-function and yields
the frequency-integrated Mueller matrix in the form M̂(single)(β) = C(β)Ŵ(β) where C(β) =
r2
0 I(i)(1 − β2)/2r2(1 − βs)6. Adding the FTT correction factor (1 − βs), yields the final expression
for the frequency-integrated Mueller matrix determined by the combined effect of many electrons

M̂(µ, θ) =
r2
0 NI(i)

2r2

∫
(1 − β2) fM (β)dβ
(1 − βs)5

Ŵ(β). (2.9)

For compact notation, we introduce the normalized dimensionless matrix m̂(µ, θ) = M̂(µ, θ)/C0

where the dimensionless factor C0 = r2
0 I(i)N/2r2. The integration is performed in spherical

coordinateswith the βz and βx axes directed along s and ex , respectively. Four elements of thematrix
Ŵ are proportional to b ∝ βx . They are average to zero after integration over the velocity space.
The remaining five elements are integrated in analytical form yielding functions of the scattering
angle, u = cos θ, and electron temperature via the factor µ2 and function G(µ) = K1(µ)/(µK2(µ)),
where K1 and K2 are modified Bessel functions of the second kind [20]

m00 = 1 + u2 − 2G(µ)(u2 + 4u − 3) + (16/µ2)(1 − u)2

m01 = m10 = 1 − u2

m11 = 1 + u2 + 2G(µ)(u2 − 4u + 1) + (12/µ2)(1 − u)2

m22 = 2u − 4G(µ)(u2 − u + 1) − (12/µ2)(1 − u)2

m33 = 2u − 4G(µ)u(2u − 1) − (8/µ2)(1 − u)2. (2.10)

The details of the calculations are described in ref. [18]. Exact analytical solutions (2.10) are valid
for the full range of scattering angles and electron thermal motion from non-relativistic to ultra-
relativistic. The first terms in (2.10) describe the change of polarization in cold plasma (µ→∞), the
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second terms yield first order corrections in the weakly relativistic limit at µ � 1, and the third terms
dominate at ultra-relativistic temperatures µ � 1. The use of the correct weighting factor (1− βs)−5

in (2.9) is important. For example, the off-diagonal elements m01 = m10 do not depend on electron
temperature. Their temperature independence is a unique consequence of the fifth power weighting
factor. The same integration performed for the sixth power weighting factor (without the FTT
effect) or any other weighting factors would result in temperature-dependent off-diagonal elements.

The degree of depolarization (2.3) depends on Te, θ, and polarization characteristics of the
incident light ψ and χ. In spite of the large number of variables, the exact analytical results allow
us to describe in a compact form the general properties of the degree of polarization. One particular
example illustrating a maxima of D as a function of ψ and χ is shown in figure 3 for Te = 10 keV
and θ = 90◦. There is a peak of D at ψ ' 82◦ for linear incident polarization but the absolute
maximum is reached at ψ = 90◦ for elliptically polarized light.

The ITER LIDAR TS system was planned to detect backscattered radiation at θ ∼ 180◦. For
such backscattered light, the degree of depolarization is quadratic in Te/mec2 � 1 and, therefore,
small (∼ 3 − 5%) at the temperatures expected in ITER. For a conventional TS system with
θ ' 90◦, the situation is much more favorable with average D ∼ 20 − 25%. The cases of practical
interest of circular and linear incident polarizations are illustrated in figure 4 at three scattering
angles. Although circular incident polarization yields stronger depolarization of scattered radiation,
rigorous minimization of the error bars shows that linear incident polarization is preferential for
polarization-based diagnostics [17].
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Figure 3. Depolarization degree vs orientation and
ellipticity angles ψ and χ at θ = 90◦ , Te = 10 keV.
There is a local maximum of D at ψ ' 82◦ and χ =

0 (linear polarization), but the absolute maximum is
reached atψ = 90◦ and χ ' 9◦ (elliptical polarization).
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linear polarization at ψ = χ = 0).

2.3 Frequency-resolved Mueller matrix

Realistic experimental constraints require detecting scattered photons within a limited wavelength
range. This necessitates understanding the frequency-resolved degree of polarization first discussed
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in ref. [14]. Rigorous analysis of polarization characteristics in a finite spectral band does not
seem to be present in polarization literature. As suggested in ref. [18], some quantitative steps in
this direction can be made on the basis of equation (2.4). Consider a partial contribution ∆S(s)

to the spectrum integrated Stokes vector (2.4) from a narrow frequency interval ∆ω, such that
∆S(s) = S(s)(ω)∆ω. Formal substitution of ∆S(s) to the equation (2.3) yields spectral degree of
polarization P(ω)which is determined by the spectral density S(s)(ω) and does not depended on ∆ω

P(ω) =

√
S(s)1

2
(ω) + S(s)2

2
(ω) + S(s)3

2
(ω)

S(s)0 (ω)
. (2.11)

The Stokes vector components S(s)(ω) are determined by the single electron spectral Mueller
matrix (2.6), (2.7) averaged over the relativistic Maxwellian distribution function with the FTT
correction factor (1 − βs)

M̂(ω, µ, θ) =
r2
0 neVE2

0
2r2

∫
(1 − β2) fM (β)dβ
(1 − βs)5

Ŵ(β)δ
(
ω − ωi

1 − βi
1 − βs

)
. (2.12)

Contrary to the previous section 2.2, the integration over β is performed in (2.12) in a different co-
ordinate system (ex, ey, ez) with the z-axis directed along ks −ki such that ez = (ks −ki)/|ks −ki | =

(s(X +1)− i)/k, ey = ez × ex , where ex is the unit vector normal to the scattering plane. The dimen-
sionless wave vector k and frequency shift X relative to the incident wave frequency are defined as

k =
c |ks − ki |

ωi
=

√
X2 + 2(X + 1)(1 − u), X =

ω

ωi
− 1. (2.13)

The argument of the δ-function in (2.12) takes a formwhich allows for immediate integration over βz :
δ(ω−ωi(1− βi)/(1− βs)) = (1− βs)δ(βω− βz)/(ωik), where βω = X/k. Performing βz-integration
yields a double integral of two variables βx and βy over a circular area β2

x + β
2
y ≤ 1 − β2

ω while the
βz component is fixed in the integrand, βz = βω. Four elements of the matrix Ŵ are proportional
to b ∝ βx and averaged to zero after integration over βx . The remaining five elements are integrated
in the polar coordinate system (β⊥, φ) such that βx = β⊥ cos φ and βy = β⊥ sin φ where 0 ≤ β2

⊥ ≤

1 − β2
ω and 0 ≤ φ ≤ 2π. The results for the dimensionless matrix m̂(ω, µ, θ) = ωiM̂(ω, µ, θ)/C0

are presented in a compact form of a superposition of five well defined functions E (n)(p, r) with 25
coefficients, 13 of which are different non-zero rational functions of the dimensionless frequency
X and scattering angle u = cos θ given by equation (C12) in ref. [19]

m̂i j(X, µ, u) =
n=4∑
n=0

C(n)i j (X, u)E
(n)(p, r), E (n)(p, r) =

∫ ∞

1

dt exp(−pt)
(r2 + t2)(2n+1)/2 , n = 1, . . . 4

E (0)(p, r) = exp(−p), p = µ

√
X2

2(X + 1)(1 − u)
+ 1, r2 =

2(X + 1)(1 + u)
k2 . (2.14)

For backscattered radiation with u = −1 the argument r = 0. In this particular case, the integrals
E (n)(p, r) coincide at n = 1, . . . 4with the exponential integral functions E (n)(p, 0) = E2n+1(p) [20]).

The frequency-resolved degree of depolarization is defined as D(ω) = 1− P(ω) where P(ω) is
given by (2.11). At given ω, the properties of D(ω) dependencies on Te and θ are similar to those

– 8 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
C
0
2
0
0
9

presented in figures 3, 4 for the frequency-integrated Mueller matrix. The spectral dependence of
D(ω) characterizes the sensitivity of the degree of depolarization to the frequency of the scattered
radiation. In figure 5, typical examples of the spectral profiles D(ω) are shown at Te = 40 keV and
three scattering angles θ = 130◦, 150◦ and 180◦. At all angles, the functions D(ω) have maxima
at the frequency approximately equal to the frequency of the incident wave. The peak values are
about 15% higher than the degrees of depolarization shown by dashed lines and calculated at the
same Te and θ with the use of the frequency-integrated Mueller matrix. The right panel illustrates
the dependence of the peak values D(ωi) on incident polarization by plotting them along four
boundaries of the polarization angles at θ = 130◦ (solid lines). The values of D determined from
the frequency-integrated Mueller matrix are shown by dashed lines. Both solid and dashed curves
demonstrate similar behavior but with slightly different amplitudes.
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Figure 5. Left panel: spectral dependence of the degree of depolarization D(X) for linear incident polarization
with ψ = 0 at θ = 130◦, 150◦ and 180◦ (solid lines); the degree of depolarization at the same angles from
the frequency-integrated Mueller matrix (dashed lines). The right panel: dependence of the peak values
D(0) on incident polarization along four boundaries of the polarization angles 0 ≤ ψ ≤ π/2, 0 ≤ χ ≤ π/4
at θ = 130◦ (solid lines) [19]. The values of D for the frequency-integrated Mueller matrix are shown by
dashed lines (all curves correspond to Te = 40 keV).

2.4 Verification of the frequency-resolved solutions

Derivation of the newly obtained exact relativistic solutions (2.14) for the frequency-resolved
Mueller matrix elements requires long analytical calculations. The final form of the solution is
represented by the 5×5matrix of the coefficientsC(n)i j . The intermediate steps of the calculations are
briefly described in the main part of ref. [19] while additional details are given in the appendix and
in the supplementary material to the paper. The large amount of integrations and transformations
in the derivation increases the probability of mistakes in the final analytical expressions. Partial
verification of the results was performed in ref. [19] numerically by integrating (2.14) over the entire
frequency interval −1 ≤ X ≤ ∞ and comparing with the frequency-integrated quantities (2.10).
The correctness of the analytical calculations was also confirmed by evaluating the spectral power
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< |Ex |
2 > (X) = (S(s)0 + S(s)1 )/2 ∝ (m00+m11+2m01)/2 along the direction ex normal to the scatter-

ing plane (see figure 2) and comparing it with the exact relativistic spectral power [21] obtained for
linear incident polarization perpendicular to the scattering plane (ψ = χ = 0). Although these two
benchmarks were successful they cannot guarantee the accuracy of all five Mueller matrix elements
and confirm validity of the exact analytical solutions. Because of the importance of this question
soon after publication of ref. [19] the solutions became a subject of a thorough verification by the
Italian group headed by Prof. L. Giudicotti. The purpose of their workwas to benchmark the expres-
sions (2.14) with the purely numerical 3D integration code independently developed by this group
for TS polarization analysis [22]. The main steps and results of the verification are decribed below.

Originally, the feasibility of the frequency-resolved TS polarimetry and an expression similar
to (2.12) but with incorrect sixth power weighting factor (1 − βs)−6 were suggested in ref. [14].
Two angular characteristics η1 = βi/β and η2 = βs/β and the variable β = |β | were suggested
as the variables of integration over the velocity space. They are substantially different from the
variables of integration used in section 2.3. In these variables the volume element in the velocity
space becomes [14]

dβxdβydβz =
β2dβdη1dη2

4π
√

W
, W = sin2 θ − η2

1 − η
2
2 + 2η1η2 cos θ (2.15)

The set of variables (2.15) was used by the Italian group for the development of a pure numerical 3D
integration code with correct fifth power weighting factor (see equation (2.12)). After integration
of the delta-function over one of the angular variables, the other two integrations are performed
numerically with the use of a 2D computational grid. This procedure yields the numerical functional
dependencies of all five Mueller matrix elements m(num)

i j on the dimensionless wavelength Λ =
λ/λi − 1, u and Te [23]. These dependencies are compared with the analytical expressions (2.14)
referred further to as m(an)

i j . The analytical expressions are evaluated for the same arguments (grid
points) as the numerical functions m(num)

i j . For this purpose, the analytical solutions (2.14) are
transformed from the frequency X to the wavelength variable Λ and are multiplied by the factor
(1 + Λ)−2 to take into account a relationship between the differentials dX = −dΛ/(1 + Λ)2. The
use of the different variables of integration and the integration methods makes both numerical and
analytical approaches fully independent providing a good basis for rigorous benchmarking.

The measure of disagreement between analytical and numerical results is determined by their
relative deviations Ri j(Λ, u,Te) = |(m

(an)
i j −m(num)

i j )/m(an)
i j |. To illustrate the results of the verification

these quantities are plotted as functions ofΛ in figure 6 for fiveMueller matrix elements evaluated at
θ = 140◦ and Te = 25 keV which are typical for the ITER conventional core TS system. A complete
scan and analysis of the full parameter space requires a large amount of computation and will
be published in a separate paper. The analytical and numerical results are in excellent agreement
(< 0.01% deviation), verifying bothmethods. This successful cross-check of the analytical solutions
for all fiveMuellermatrix elements encourages use of them as a reliable and universal tool for general
description of the spectral and polarization properties of incoherent Thomson scattering. Analytical
evaluation of the m(an)

i j functions at 100 equidistant points within the interval −0.2 < Λ < 1 takes
about 77 ms on a standard laptop PC while the same data calculated numerically require a CPU time
about two orders of magnitude longer. This leads to an important conclusion that exact analytical
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Figure 6. Plots of Ri j(Λ) vs Λ evaluated at 100 equidistant points within the interval −0.2 ≤ Λ ≤ 1 at
θ = 140◦, Te = 25 keV for five frequency-resolved Mueller matrix elements. The analytical and numerical
results are in excellent agreement.

solutions can be effectively used for direct real time TS polarization measurements in ITER with
fast time resolution which is beyond the capability of numerical codes.

3 Interferometry and polarimetry

The ITER TIP system is designed for tangential plasma density measurement from both traditional
interferometry and Faraday-effect polarimetry (by both direct measurement and as a means to
compensate fringe jumps appearing in the interferometer). It is based on the use of laser beams
with the wavelengths 10.6/5.3 µm propagating along five chords in the toroidal plane which are
double-passed by retro-reflection from corner cube reflectors mounted in the ITER walls. In a
cold plasma, the interferometric phase Φ and the Faraday rotation angle of polarization ψF are
proportional to the line integral of the electron density and the line integral of the electron density
multiplied by the parallel component of the magnetic field, respectively. For the ITER TIP system
parameters, n ' 1020 m−3, B‖ ' 5.3 T, L ' 21 m, λ = 10.6 µm, they are as follows

Φ
(cold)[rad] = 2.82 × 10−21λ[µm]

∫
ne(z)[m−3]dz[m] ' 63, (3.1)

ψ
(cold)
F [rad] = 2.62 × 10−25λ2[µm]

∫
ne(z)[m−3]B‖(z)[T]dz[m] ' 0.33. (3.2)

The ITER PoPola diagnostic is based on the Faraday (FR) and Cotton-Mouton (CM) effects and
provides a unique method for internal magnetic field and current profile measurements as well
as electron density. It is anticipated to operate with long wavelength far-infrared laser beams
(118/50 µm) propagating in the poloidal plane along nine chords via an equatorial port and six
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chords via an upper port. In this case, with propagation largely perpendicular to the magnetic field,
the Cotton-Mouton effect becomes significant and leads to a change in the ellipticity characterized by
the ellipticity angle χ. For the PoPola system parameters, n ' 1020 m−3, B⊥ ' 5.3 T, L ' 8 m, λ =
118 µm, the induced ellipticity of radiation initially linearly polarized at 450 to B⊥ is given by

χ(cold)[rad] = 2.46 × 10−29λ3[µm]
∫

ne(z)[m−3]B2
⊥(z)[T]dz[m] ' 0.91. (3.3)

3.1 Thermal correction for Maxwellian electrons

One source of error is finite electron temperature effects neglected in the cold plasma dispersion
relation. Thermal corrections are proportional to τ = Te/mec2 and are small at Te ∼ 1 keV, but
become sizable at Te ≥ 10 keV. The effects caused by the relativistic electron mass dependence
on the velocity are opposite compared to the non-relativistic (NR) Doppler-like contributions.
They change the sign of the NR thermal corrections for the interferometric phase and Faraday
rotation angle, and reduce the magnitude of the NR correction for the Cotton-Mouton effect. At
Te = 25 keV, the resulting values of these quantities relative to their values in cold plasma are,
respectively, −7.5%,−10% and +22.5% (see ref. [5]), while the non-relativistic model [6] yields
overestimated values, +5%,+15% and +60% , correspondingly.

For formal analysis of the problem an iterative technique for solving the relativistic Vlasov
kinetic equation was developed in ref. [5]. The key element of the method is expansion in powers
of Y = ωce/ω � 1 instead of integration over azimuthal angle in the velocity space. This avoids
the use of a complicated Bessel function series representation. Instead, expansion is performed
by successive differentiations of simple standard trigonometric functions. This leads to the result
in the analytic form of a double power series expansion of the dielectric tensor ε ′i j in Y � 1 and
τ � 1 to any desirable order. Six iterations are enough to obtain the dielectric tensor expanded to
second order in τ with all relativistic factors taken into account. Initially, the results are obtained
in the reference frame with the z′-axis oriented along B0 and the k vector in the x ′, z′ plane with
the angle α between them. Then, the dielectric tensor is transfered to the laboratory reference
frame x, y, z with the z-axis oriented along k while B0 is arbitrary and has the Cartesian coordinates
B0(sinα cos β, sinα sin β, cosα). Finally, expressing Ez in terms of Ex and Ey yields two coupled
equations for Ex and Ey (Jones equations)(

N2 − ηxx −ηxy
−ηyx N2 − ηyy

) (
Ex

Ey

)
= 0, ηi j = εi j − εizεz j/εzz, i, j = 1, 2. (3.4)

In the WKB approximation, the electric field of the wave is characterized by the slowly varying
complex amplitude E. The model which adequately describes evolution of polarization of the wave
in a nonuniform plasma and magnetic field is based on the Stokes vector equation

ds
dz
= Ω × s, (3.5)

where the three-component unit Stokes vector s is defined in section 2, z is a coordinate along
the propagation direction and the spatially varying angular velocity vector Ω(z) = (ω/2c)(ηxx −
ηyy, 2Re{ηxy}, 2Im{ηxy}). The basic equation (3.5) allows us to address the issue of the coupling
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between the FR and the CM effects while properly accounting for the thermal effects. The Ω1 and
Ω2 components are responsible for the CM effect and Ω3 describes the Faraday rotation. Linear in
τ temperature corrections were incorporated in this model in ref. [5]. The precision of this lowest-
order linear in τ model may be insufficient; using the same iterative technique a more sophisticated
model with τ2-order corrections was developed in ref. [9] to satisfy the accuracy requirements for
the ITER TIP and PoPola systems. The expression for Ω that combines all three contributions reads

Ω = Ω(c) +
Te

mec2

©«
9Ω(c)1 /2
9Ω(c)2 /2
−2Ω(c)3

ª®®¬ +
(

Te

mec2

)2 ©«
15Ω(c)1 /8
15Ω(c)2 /8

3Ω(c)3

ª®®¬ , Ω(c) =
ω

2c

©«
ZY2 sin2 α cos 2β
ZY2 sin2 α sin 2β

2ZY cosα

ª®®¬ , (3.6)

where Z = ω2
pe/ω

2 � 1. Relative deviation of the interferometric phase Φ from its cold plasma
value Φ(cold) is caused by the thermal effects and reads

∆Φ

Φ(cold) =

(
−

3
2

∫
neTe

mec2 dz +
15
8

∫
neT2

e

m2
ec4

dz
)
/

∫
nedz. (3.7)

For the ITER TIP system with a CO2 laser at λ = 10.6 µm and Te = 25 keV, the linear thermal
correction to the interferometric phase is large (∼ 270◦), and the quadratic correction is also
significant (∼ 17◦).

3.2 Non-Maxwellian electron distribution function

New effects come into play when the electron distribution function develops an anisotropy. This
could be caused by a large mean electron drift velocity U‖e (parallel equilibrium current), an
enhanced effective perpendicular temperature T⊥ in ECRH heated plasmas, or a large effective
parallel temperature T‖ due to LH current drive. The corresponding vector Ω in the Stokes equation
is presented as a sum of three contributions Ω = Ω(0) +Ω(B) +Ω(U). The first term does not depend
on the magnetic field and describes the effect of birefringence caused by the temperature anisotropy

Ω(0) = (1 − N2)
ωZ
2c
(T‖ − T⊥)

mec2

©«
1
1
0

ª®®¬ ∝
ωZ2

2c
(T‖ − T⊥)

mec2 . (3.8)

It results in evolution of the polarization ellipse similar to the usual “magnetic” Cotton-Mouton
effect. Themagnitude of the effect is strongly reduced by almost exact cancellation of the relativistic
and non-relativistic Doppler-like contributions expressed, correspondingly, by the unity and N2 term
in the factor (1 − N2).

The second term, Ω(B), describes the generalization of linear in τ isotropic results to the case of
non-Maxwellian anisotropic distributions. It is important for correction of the interpretation errors
in plasmas with non-Maxwellian distributions generated by ECRH and other RF sources such as
EC and LH current drive

Ω(B) = Ω(c) + cos 2α
(T‖ − T⊥)

2mec2

©«
10Ω(c)1
10Ω(c)2
3Ω(c)3

ª®®¬ +
(

1
2mec2

) ©«
(5T‖ + 4T⊥)Ω

(c)
1

(5T‖ + 4T⊥)Ω
(c)
2

−(3T‖ + T⊥)Ω
(c)
3

ª®®¬ . (3.9)
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The third term, Ω(U), describes evolution of polarization due to non-zero mean electron drift
velocity U‖e (equilibrium current)

Ω(U) =
ωU‖e

c2

©«
ZY2 cosα sin2 α cos 2β
ZY2 cosα sin2 α sin 2β

ZY cos 2α

ª®®¬ . (3.10)

Motion of the electron component as a whole can be considered as the Fizeau effect, that is, the phase
velocity of electromagnetic waves depends on whether they propagate in a moving or stationary
medium. In cold non-magnetized plasma, the interferometric phase is insensitive to U‖e because of
exact cancelation of the Fizeau effect due to specific scaling of plasma refractive index on frequency,
N2 = 1 − ω2

pe/ω
2. In the presence of a magnetic field, the non-magnetized electron dispersion

relation is modified. This eliminates the effect of cancellation and leads to evolution of the wave
polarization caused by the combined action of the magnetic field and electron drift velocity and
described by the Stokes vector equation with the vector Ω(U). This may open new possibilities for
diagnosis or measurements of the parallel equilibrium current (Fizeau interferometry/polarimetry).

4 Summary

The present overview is focused on the progress achieved during the last two decades in theoretical
support for polarization-based TS diagnostics and interferometry/polarimetry in high-Te plasmas.
For the TS applications, the general formalismof theMuellermatrix and Stokes vectors is subdivided
into the frequency-integrated and frequency-resolved limiting cases. For both of them, exact fully
relativistic analytical solutions are obtained. They form a basis for the analysis and optimization of
the polarization-based TS schemes as well as for the analysis of an intermediate situation when the
optical instrumentation has a finite wavelength band.

Newly obtained relativistic expressions for the frequency resolved Mueller matrix are verified
by integrating over the entire frequency interval and comparing with the frequency-integrated
quantities. The correctness is also confirmed by checking consistency with exact relativistic spectral
power results [21]. The frequency-resolved solutions have been also verified by comparison with the
pure numerical code developed by L. Giudicotti and co-authors. The results are in a good agreement
(< 0.01% deviations) verifying both calculations. Precise analytic expressions are important for
direct real time feedback control of device operations with fast time resolution which is beyond the
capability of relativistic kinetic codes.

There are a large number of publications describing the optimization of potential polarization-
based TS diagnostic capabilities. Different modifications are compared, searching for the variant
with the smallest experimental error bars [17]. Generally, forward scattering at θ < 90◦ is more fa-
vorable for polarization-basedTSdiagnosis than backscattering at the complementary angle 180◦−θ.
In this sense, the planned ITER core TS system geometry with predominantly backward scattered
collection optics is not optimal for polarization-based diagnosis. For the ITER core TS system, com-
binations of polarization-based and spectral-based techniques are discussed, including the hybrid
method suggested recently by L. Giudicotti and co-authors [24]. In addition to the ITER core TS
application there are a number of other opportunities for implementing polarization-based Thomson
scattering diagnostics. Although these methods have not yet been fully investigated in experiments,
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an attempt to measure the depolarisation effect has recently been performed on JET. In addition to
JET, an experiment to measure the depolarization of the TS radiation has been proposed on the Fras-
cati TokamakUpgrade (FTU). This information aswell as a possible experimental test of a polarimet-
ric Thomson scattering diagnostic technique on theW7-X stellarator are briefly discussed in ref. [19].
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